
Softwareentwicklungsmodelle Seite 1 von 4

Wasserfallmodell

Beim klassischen
Wasserfallmodell werden
die Entwicklungsphasen relativ
starr und sequentiell durchlaufen.
Iterationen sind nur zwischen zwei
aufeinanderfolgenden Phasen möglich.

XP (Extreme Programming)

XP (Extreme Programming) beschreibt eine agile iterative Vorgehensweise beim Software-
entwicklungsprozess mit leichtgewichtiger Methodologie und wenig Dokumentation und Overhead.

Schwerpunkte sind:
● User Stories: Die Anforderungen an die zu erstellende Software werden nicht wie beim

RUP in Use Cases, sondern in User Stories erfasst. User Stories beschreiben GUIs,
Funktionalitäten und Testszenarien.

● On-site Customer: Ein kompetenter Vertreter des Kunden ist während der gesamten
Entwicklungszeit bei den Entwicklern anwesend (dürfte nur selten realisierbar sein).

● Pair Programming: An den Entwicklungsrechnern sitzen jeweils zwei Entwickler und
entwickeln gemeinsam.

● Testing: Vor der Entwicklung eines Moduls werden automatisierbare Testfälle (Unit Tests)
programmiert.

● Simple Design: Es werden keine unnötigen Features implementiert.
● Small Releases: Es werden häufige Iterationen durchgeführt mit lauffähigen Programmen

als Ergebnis, welche der Kunde begutachtet.
● Refactoring: Der Sourcecode wird (wenn notwendig) vergleichsweise früh restrukturiert.
● Continuous Integration: Von verschiedenen Teammitgliedern produzierter Code wird sehr

häufig zusammengeführt.
● Collective Ownership: Der entwickelte Sourcecode gehört dem gesamten Team, jeder ist für

jeden Code verantwortlich. Die Teams rotieren zyklisch.
● Coding Standards: Es werden Konventionen zum Aufbau des Codes erstellt, um Lesbarkeit

zu erleichtern.

Volker Janßen

Initialisierung

Analyse

Entwurf

Zielerforschung, Anforderungen

Lastenheft, Auftrag

Pflichtenheft, Design

Realisierung Implementierung

Einführung Test, Verifikation

Nutzung Abnahme, Betrieb, Wartung

Bildquelle: James Donovan Wells

Softwareentwicklungsmodelle Seite 2 von 4

RUP (Rational Unified Process)

RUP (Rational Unified Process) ist eine Vorgehensweise beim Softwareentwicklungsprozess mit
eher schwergewichtiger Methodologie, vielen formalen Definitionen und Dokumenten, iterativ,
architekturzentriert, Use-Case-getrieben, wohldefiniert und sehr strukturiert.

RUP teilt das Projekt in vier Phasen:
● Inception Phase (Projektsetup, Konzeptualisierung)
● Elaboration Phase (Ausarbeitung, Entwurf)
● Construction Phase (Implementierung)
● Transition Phase (Übertragung, Inbetriebnahme)

RUP definiert Workflows für neun Kernaufgaben (Disciplines):
● Business Modeling (Geschäftsprozessmodellierung)
● Requirements (Anforderungsanalyse)
● Analysis & Design (Analyse & Design)
● Implementation (Implementierung)
● Test
● Deployment (Softwareverteilung)
● Configuration & Change Management (Konfigurations- und Änderungsmanagement)
● Project Management (Projektmanagement)
● Environment (Umgebung)

Innerhalb der Phasen gibt es inkrementelle Iterationen über die Workflows, die teilweise ähnlich
dem Wasserfallmodell abgearbeitet werden. Zu jedem Zeitpunkt bietet RUP Planungshilfen,
Leitlinien, Checklisten und Best Practices. Die konsequente und komplette Nutzung von RUP
macht erst bei Teams mit über 10 Personen Sinn.

Volker Janßen

Bildquelle: IBMBildquelle: IBM

Softwareentwicklungsmodelle Seite 3 von 4

V-Modell [XT] (eXtreme Tailoring)

V-Modell ist ein Vorgehensmodell zum Softwareentwicklungsprozess, also eine Richtschnur für die
Organisation und Durchführung von IT-Vorhaben. Das V-Modell 97, auch EstdIT (Entwick-
lungsstandard für IT-Systeme des Bundes) genannt, bzw. der Nachfolger V-Modell XT ist bei
vielen zivilen und militärischen Vorhaben des Bundes verbindlich vorgeschrieben. Es ist ein wenig
mit dem Wasserfallmodell vergleichbar, aber frühe Phasen werden mit späten über Testdaten (V-
förmig) verbunden. Es ist auch iterativ anwendbar und kann mit OOAD und UML eingesetzt
werden. Phasen und zeitliche Abläufe stehen nicht im Vordergrund. Es ist sehr stark formalisiert
und dokumentenzentriert und muss vor der Anwendung angepasst werden („Tailoring“).

Zum V-Modell 97 sind in drei Standardisierungsebenen beschrieben:
● Vorgehensmodell

beschreibt durchzuführende Aktivitäten (Tätigkeiten) und zu erstellende Produkte
(Ergebnisse).

● Methodenzuordnung
legt fest, mit welchen Methoden die Aktivitäten des Vorgehensmodells durchzuführen und
welche Darstellungsmittel bei den Ergebnissen zu verwenden sind.

● Werkzeuganforderungen
legen fest, welche funktionalen Eigenschaften die Software-Tools aufweisen müssen.

Das V-Modell ist in vier Submodelle gegliedert:
● PM: Projektmanagement
● QS: Qualitätssicherung
● SE: Softwareentwicklung/Systemerstellung
● KM: Konfigurationsmanagement

Seit 2005 gibt es mit V-Modell XT (eXtreme Tailoring) einen Nachfolger des V-Modells 97.
Es ist organisationsneutral, flexibel nach dem Baukastenprinzip anpassbar und wird durch
Dokumentvorlagen wie beispielsweise Plan- oder Angebotsbausteine unterstützt. Es unterliegt
keiner Einschränkung durch Nutzungsrechte und kann lizenzfrei adaptiert und eingesetzt werden.

Volker Janßen

Anforderungsdefinition

Grobentwurf

Feinentwurf

Implementation Modultest

Integrationstest

Systemtest

Abnahmetest

Testfälle

Testfälle

Testfälle

Szenarien

Softwareentwicklungsmodelle Seite 4 von 4

Vergleich von Softwareentwicklungsmodelle
Das Wasserfallmodell hat sich in der Praxis als zu unflexibel erwiesen und kann nur bei sehr
kleinen und überschaubaren Softwareprojekten sinnvoll eingesetzt werden.

Die folgende Tabelle vergleicht in stark vereinfachender Weise
XP, RUP und das V-Modell (XT)

XP RUP V-Modell (XT)

Abkürzung für • Extrem Programming • Rational Unified Process • Vorgehens-Modell
(Extreme Tayloring)

Fokus des
Modells • Entwicklungsprozess • Projektprozess • Unternehmensprozess

Wichtige
Rollen

• Kunde
• Softwareentwickler • Softwarearchitekt

• Systemdesigner
• Softwareentwickler
• technischer Autor

Anforderun-
gen und

Änderungen

• nur die wichtigsten
Anforderung müssen
bekannt sein

• sehr flexibel für
Änderungen

• die meisten Anforderung
sollten bekannt sein

• flexibel für Änderungen

• Alle Anforderungen
müssen bekannt sein.

• unflexibel für Änderungen
• KM (Konfigurations-

management)

Projekt-
komplexität

• bis mittlere Komplexität
(Alle Entwickler im Team
 verstehen die Software)

• mittlere bis
• hohe Komplexität • hohe Komplexität

Entwicklungs-
teamgröße

• kleine Teams bis 10
Personen

• mittlere bis
• große Teams

• mittlere bis
• große Teams

Bewertung

• leichtgewichtige
Methodologie

• wenig Dokumentation /
Overhead

• agil
• iterativ
• Architektur wird

von allen definiert
• geringer

Einführungsaufwand
• funktioniert nur mit

homogenem (kleinem)
Team.

• schwergewichtige
Methodologie

• formalisierter strukturierter
Prozess

• Use-Case-getrieben
• iterativ
• architekturzentriert
• Rolle des Architekten klar

definiert.
• hoher

Einführungsaufwand

• sehr formalisiert und
• dokumentenzentriert
• Architektenaufgaben auf

mehrere Rollen verteilt
• hoher

Einführungsaufwand

Volker Janßen

